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Organic Metamorphism and the Generation of Petroleum:

Abstract A scale referred to as "'Level of Organic Meta-
morphism” (LOM)} describes how far the thermal meta-
morphism of sedimented organic matter has progressed dur-
ing subsurface burial. It represents o single, continuous
numerical scale which is applicable to the entire thermal
range of interest in the generation and destruction of petro-
leum. It is based on coal rank and is convenient for inferre-
lating other useful scales of organic metamorphism.

A relation of temperature to time for petroleum genera-
tion is based on LOM values of sedimentary rocks in the 9-
to 16-LOM range with reasonably dependable maximum
temperatures and effective heating times. The relation is
nearly equivalent to a doubling of the reaction rate for each
additional 10°C, and the apparent activation energies in-
crease from about 18 to 33 kcal/mole as LOM increases
from 9 to 16.

The principal metamorphic stages of petroleum genera-
fion and a zone of initial oil-source-rock maturity are super-
imposed on graphs of LOM versus depth for two wells to
illustrate the prediction of specific depths where oil, gos con-
densate, and high-temperature methane would be generat-
ed in petroleum source rocks ot any given location,

INTRODUCTION

The origin of petroleum can be described gen-
erally by four successive stages: (1) the formation
‘of organic-rich, fine-grained sediments through
the photosynthesis, deposition, and preservation
of abundant organic matter; (2) the thermal deg-
radation of that organic matter during burial to
increasing temperatures, with the formation of
petroleum molecules; (3) the expulsion of oil and
gas from its fine-grained source rock, and its mi-
gration through and entrapment in porous, per-
meable, reservoir rock; and (4) the physical, ther-
mal, and/or biologic alteration of petroleum in
reservoir rock. The second of these four stages—
the thermal metamorphism of organic matter—is
the subject of this paper.

Publications by Stevens et al (1956) and Bray
and Evans (1961) provided the stimulus for re-
newed interest in the importance of heat in the
generation of petroleumn. They were the first to
point out that the small amounts of hydrocarbons
in recent sediments typically have distributions of
n-alkanes which are significantly different from
those of crude oils or postulated source beds.
They concluded that shales and limestones with
odd-to-even carbon-number ratios significantly
greater than those of crude oils could not have
generated enough hydrocarbons to form petro-
leum-like mixtures and thus to expel crude oil.
Subsequently, Philippi (1965) demonstrated for
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Miocene source sediments of the Los Angeles and
Ventura basins of California that most of the oil
in those basins is generated at burial temperatures
exceeding 115°C (239°F) and that shale hydro-
carbon compositions become crude-oil-like or
“mature” in those basins only after burial to tem-
peratures of about 150°C (302°F).

The generation of petroleum hydrocarbons
from thermally reactive organic matter (mainly
kerogen) during burial is a part of the overall pro-
cess of thermal metamorphism of organic matter.
We refer to this process as “organic metamorph-
ism.” It also has been called “transformation”
(Dobryansky, 1963), “eometamorphism” (Lan-
des, 1966, 1967), “thermal alteration” (Henderson
et al, 1968; Staplin, 1969), “incipient metamorph-
ism” (Baker and Claypool, 1970), “katagenesis”
(Vassoyevich et al, 1970), and frequently just
“maturation.” Dobryansky (1963) and subse-
quently many others have described the process
as a series of thermocatalytic reactions leading to
products of lower free energy by (1) degradation,
leading to smaller molecules of increasing volatil-
ity, mobility, and hydrogen content (with meth-
ane as the end product in sedimentary rocks), and
(2) condensation, leading to a carbonaceous resi-
due of decreasing hydrogen content (with graphi-
tic carbon as the end product).
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There are many published scales (e.g., coal
rank, spore and pollen carbonization, elemental
composition of kerogen, vitrinite reflectance,
electron spin resonance, and chemical maturity
indicators) which reflect irreversible effects of or-
ganic metamorphism. For application to petro-
leum exploration problems, however, there has
been a need for a single numerical scale which is
applicable over the entire thermal range of inter-
est in the generation and destruction of petro-
leum. This paper describes the development of
such a scale for indicating how far the organic
metamorphic process has gone at any given loca-
tion, its dependence on temperature and time,
and its application to the study of petroleum gen-
eration.

CONTINUOUS NUMERICAL SCALE OF ORGANIC
METAMORPHISM

Desired Characteristics

The coal-rank scale has for many years provid-
ed the basic framework for studying the coalifica-
tion process and recently has been used for com-
paring stages of organic metamorphism in
petroleum source rocks (Brooks and Smith, 1967,
1969; Brooks, 1970; Hacquebard and Donaldson,
1970; Vassoyevich et al, 1970; Teichmiiller, 1971;
Shibaoka et al, 1973). None of the various coal
ranking properties such as calorific value, mois-
ture content, volatile matter (or fixed carbon), hy-
drogen content, and vitrinite reflectance, howev-
er, is satisfactorily applicable over the entire
range of interest for petroleum generation. Thus
the coal-rank scale is not a single numerical scale
but, in effect, represents a series of two or more
partly overlapping numerical scales. The main
new characteristic needed in a scale of organic
metamorphism, therefore, is that it is a numerical
scale continuous over the whole range of genera-
tion and destruction of petroleum compounds.

Another desired characteristic is that the scale
can be correlated with other available scales of
organic metamorphism. This means mainly that it
should be correlative with coal rank and the ma-
jor coal-rank parameters, to which most scales
have been compared.

Still another characteristic which we desired is
that the scale be approximately linear with maxi-
mum burial depth in any given geographic loca-
tion where the sedimentary column exhibits no
major time hiatus or temperature-gradient anom-
aly. Such a scale would be convenient for geolo-
gists to use in relating organic metamorphism to
depth on subsurface cross sections. As we shall
see later, however, probably no single scale can
be linear with maximum burial depth for subsur-
face sections of widely differing burial histories.
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Inasmuch as temperature 1s considered to be
the main defining factor in the process of organic
metamorphism (Kartsev et al, 1971), it would
seem that a scale of maximum temperature might
serve the desired purpose. The effect of time,
however, is too great to allow the use of maxi-
mum temperature alone as a general measure of
organic metamorphism. For example, for subsur-
face organic matter which has reached an organic
metamorphic level equivalent to the high-vola-
tile/medium-volatile bituminous coal-rank boun-
dary, we have observed maximum burial temper-
atures as low as 220°F (105°C) for Paleozoic
rocks of West Texas and as high as 400°F
(205°C) for Tertiary sediments of the Los Angeles
and San Joaquin basins of southern California. A
suitable scale, therefore, should reflect both tem-
perature and time effects-—thus temperature his-

tory.
Development of LOM Scale

With the above characteristics in mind, we de-
veloped a scale which we call “Level of Organic
Metamorphism,” or just “LOM.” For this pur-
pose we desired (1) a single subsurface section of
organic-tich sediments which was buried at essen-
tially a constant rate and a constant temperature
gradient, and (2) a linear scale (zero to 20) to re-
place the depth scale of that ideal section. Of the
subsurface sections considered at that time, it ap-
peared that the New Zealand (Tertiary-Creta-
ceous) coal-rank column reported by Suggate
(1959, p. 90) was the most suitable, and we used a
modification of that column as our standard. Sug-
gate included a numerical scale (“rank number”)
which was linear with maximum burial depth for
the coal column. His scale, however, was simply
maximum depth (in feet) divided by 1,000. To
avoid any connotation of absolute maximum
depth in the LOM scale, we used a numerical
scale—from zero at no burial to 20 at the anthra-
cite/meta-anthracite boundary—which was in-
tentionally different from Suggate’s rank number.

The defined relation of the LOM scale to
Suggate’s coal-rank column is shown in Figure 1.
The only modifications which we added to
Suggate’s original coal-rank column are subdivi-
sions within the subbituminous and high-volatile
bituminous coal ranks in accordance with the
ASTM classification.

Recently Bostick and Damberger (1971) re-
ported a relative-depth column which is a com-
posite from coalification studies (mainly Carboni-
ferous) of several geographic areas of overlapping
coal ranks. This composite coal-rank column, in
which we have defined arbitrarily the anthracite/
meta-anthracite boundary as LOM 20 for conve-
nience of comparison. is compared with the Sug-
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FiG. 1—Definition of LOM scale on basis of modifi-
cation of Suggate’s (1959) coal-rank column. Compari-
son with composite column (Bostick and Damberger,
1971) also thought to be approximately linear with
depth.

gate column in Figure 1. The two depth columns
are not in very good agreement. The lack of
agreement may reflect problems such as difficul-
ties in the proper geologic reconstruction of the
sections, differences in ages of the coal sections,
and irregular conditions of burial rates and tem-
perature gradients within a single coal section.
Without sufficient information to decide that
either coal-rank column is clearly better than the
other as a subsurface relative-depth standard, we
are continuing to use the LOM scale as originally
defined in terms of Suggate’s coal-rank column,
but we are keeping in mind the inferred possible
limitations of the standard.
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Correlation with Other Scales

Other useful scales of organic metamorphism
which have been reported in the literature are
compared with LOM in Figure 2. The figure in-
cludes coal rank, carbonization of structured or-
ganic matter, and vitrinite reflectance, and these
scales are described briefly. Other indicators of
increasing organic metamorphism which are use-
ful but have not yet been correlated numerically
with coal rank or LOM, include the elemental (C-
H-O) composition of kerogen (Seyler, 1948; Van
Krevelen, 1950; Van Krevelen and Schuyer,
1957; Mclver, 1967; Durand and Espitalié, 1973;
Tissot et al, 1974), paleotemperature based on
electron spin resonance (Pusey, 1973a, b), and
chemical maturity indicators (Stevens et al, 1956;
Bray and Evans, 1961; Philippi, 1965; Tissot et al,
1974). In addition the combination of tempera-
ture and time has been used to predict levels of
organic metamorphism, and this will be discussed
in a later section of this paper.

Coal rank—The coal-rank scale shown in Fig-
ure 2 is the modified Suggate (1959) column.
Shown together with the ASTM rank nomencla-
ture are ranking properties of calorific value
(BTU) for low-rank coals and percent volatile
matter (VM) for higher rank coals. The part of
the VM scale which we extended into the lower
rank range (VM > 31) is suitable only for humic,
vitrinitic coals, and numerical values are shown in
parentheses.

Changes in palynomorphs—Gutjahr (1966) has
used a color scale (yellow through brown to
black) based on the carbonization of spores and
pollen. He showed that the intermediate color
range of brownish yellow to dark brown account-
ed for only a small but important part of the
LOM scale. Staplin (1969) reported a similar
scale, “Thermal Alteration Index,” based on the
microscopic observations of both color and struc-
ture alteration of organic debris—mainly leaf cu-
ticle and plant pollen. In 1974 Staplin et al report-
ed the correlation of this index with coal rank. A
similar scale, the state of preservation of palyno-
morphs, was reported by Correia (1967) but is not
shown here.

Vitrinite reflectance—Probably one of the most
useful measures of organic metamorphism is the
reflectance of  vitrinite (McCartney and
Teichmiiller, 1972; Shibaoka et al, 1973). Vitrinite
is found not only in humic coals but also in coaly
inclusions in many shales. Therefore, it is directly
applicable to the study of temperature histories of
petroleum source rocks (Teichmiiller, 1971;
Castafio, 1973; Castafio and Sparks, 1974). Fur-
thermore, it provides a continuous numerical
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scale from about LOM 7 or 8 (high-volatile C
bituminous) to LOM 17 or 18 (within the anthra-
cite coal-rank range). The major part of the scale
shown in Figure 2 (R, > 0.8) was derived from
the curve of vitrinite reflectance versus vitrinite
volatile matter reported in Internat. Handbook
on Coal Petrography, 1971, Rank, p. 3. The low-
reflectance part of the scale (R, < 0.8) represents
an extension to values of 0.5 percent R, at the
subbituminous/high-volatile-bituminous-A boun-
dary and 0.6 percent R, at the braunkohle/stein-
kohle boundary (R. and M. Teichmiiller, 1973,

rsonal commun.) based on the data of
Teichmiiller (1971).

RELATION BETWEEN TEMPERATURE AND TIME

Although Figure 2 shows the correlation of sev-
eral useful scales of organic metamorphism versus
LOM, no simple scale of temperature is included.
The reason for not including it is, as pointed out
in many publications (e.g., Huck and Karweil,
1955; Teichmiiller and Teichmiiller, 1966, 1968;
Lopatin, 1971; Bostick, 1973; Demaison, 1974),
that both temperature and time are important
factors of organic metamorphism. Neither tem-
perature nor time alone, thcrefore, is a suitable
single measure of the level of organic metamorph-
ism present.
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Because of the desirability of being able to use
observed burial histories to estimate stages of the
organic metamorphic process for oil source rocks
and coals, the relative effects of temperature and
time have been studied and reported by several
investigators. Some of these will be discussed, to-
gether with our results from studies of maximum
temperature and effective heating time.

Karweil Relation for Coal

The Karweil (1955) nomogram for predicting
coal rank from burial history is probably the most
widely publicized relation of time to temperature
for subsurface organic metamorphism. It is based
mainly on the properties of coals of the Ruhr area
and makes use of an activation energy of 8.4
kcal/mole for coalification over the entire coal-
rank range (Huck and Karweil, 1955). This value
is lower than those reported since then by most
authors and appears to overemphasize the impor-
tance of time, with respect to temperature, re-
quired to produce a given level of organic meta-
morphism. Recently Bostick (1973) has suggested
a modification of Karweil’s nomogram in an ef-
fort to overcome that problem.

Doubling of Rate for Each Increase of 10°C

Lopatin (1971), Laplante (1972), and Momper
(1972) concluded that doubling the reaction rate
with each increase in temperature of 10°C pro-
vides a suitable model of the relative effects of
temperature and time in subsurface organic meta-
morphism. In addition Lopatin (1971) described a
temperature-time index, 7, which represents an
integrated burial history—a sum of the tempera-
ture-adjusted durations of burial—based on dou-
bling the reaction rate for every increase in tem-
perature of 10°C. Lopatin illustrated the use of
the temperature-time index by means of data
from the deep Miinsterland-1 core hole, about 40
mi north of the Ruhr area of Germany. His graph
of log 7 versus vitrinite reflectance is linear over
the range of 1.1 to 5 percent R, and has a very
high correlation coefficient (r = 0.999).

Maximum Temperature and Effective
Heating Time

Most of the published studies of the time-to-
temperature relation in organic metamorphic pro-
cesses have been concerned either with heating at
constant temperature or with integrating the tem-
perature effects over the whole burial history. We
have combined maximum temperature (T,,) with
an effective heating time (t.) to develop a simpli-
fied method of predicting LOM for petroleum
source rocks. Although approximate, the method
is adequate in view of the uncertainties in the geo-

A. Hood, C. C. M. Gutjahr, and R. L. Heacock

logic data. Using « variety of typical burial histo-
ries and a wide range of activation energies (8.4 to
55 kcal/mole), we concluded that the time (t )
during which a specific rock has been within
15°C (27°F) of its maximum temperature (Tp,,)
represents a reasonably suitable, though some-
what arbitrary, definition of effective heating
time for use in graphs of T, ,, versus t. A simple
illustration may help to clarify the definition of
ty. If a sediment which was formed 150 m.y. ago
required 100 m.y. to reach a temperature of
120°C, and if at sometime during the remaining
50 m.y. the temperature of the sediment reached a
maximum of 135°C and did not drop below
120°C, the last 50 m.y. is counted as the effective
heating time.

The observed relations of maximum tempera-
ture to effective heating time are shown in Figure
3 for values of LOM in the range of 9 to 16. The
relations were based on (1) measured LOM val-
ues of 40 fine-grained rocks of reasonably well-
known and varied burial histories, and (2) the ob-
served increase of LOM with depth for 8 deep
wells in Colorado and Wyoming basins (ty~20-
40 m.y.) and 5 deep wells in the Anadarko basin
of Oklahoma (t.;~200-400 m.y.). The relations of
1/T versus t in Figure 3 are drawn as straight
lines on the assumption of first-order reactions
that obey the Arrhenius equation.

Also shown in Figure 3 are activation energies
which were determined from the slopes of the
lines. E, was found to range from about 18 kcal/
mole at LOM 9 to about 33 kcal at LOM 16. By
comparison Weitkamp and Gutberlet (1968) re-
ported an increase in apparent activation energy
from about 20 to 60 kcal as kerogen conversion
increased from zero to 80 percent in laboratory
studies of microretorting of shales.

Figure 3 is intended for use in estimating LOM
from maximum temperature and effective heating
time. There are some practical problems in both
calibration and application which represent limi-
tations to general applicability. One of these
problems is the lack of sufficient knowledge of
paleotemperatures—particularly in the case of
older sediments. Furthermore, even present-day
formation temperatures are not always dependa-
ble. When the only temperature available for a
given well was recorded under standard logging
conditions within a few hours after mud circula-
tion was discontinued, we add corrections of
about 15, 30, and 35°C to recorded logging tem-
peratures of 50, 100, and 150°C, respectively.
Other problems in estimating LOM from T,
and t,, include (1) those involved in reconstruc-
tion of burial history, and (2) occasional dis-
agreement among methods of determining LOM
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FiG. 3—Relation of LOM to maximum temperature and effective heating time.

of fine-grained rocks. In addition, the degree of
conversion of kerogen to petroleum compounds
at a given LOM is not necessarily constant but
may vary significantly from one rock type to an-
other (Vassoyevich et al, 1970). Because of such
limitations, Figure 3 is probably most useful as a
relative tool when using time and temperature
data to estimate LOM values for fine-grained
rocks. That is to say, the figure is utilized best as
a tool for extrapolating LOM from dependable,
measured values in a given subsurface section.
The relative importance of time with respect to
temperature shown in Figure 3 (derived from sub-
surface data of T, and t at a given LOM) is
essentially equivalent to a doubling of the reac-
tion rate for each temperature increase of 10°C.
This is illustrated in Figure 4 for three of the
straight, constant-LOM lines of Figure 3 (i.e.,
LOM 9, 11, 16). Starting arbitrarily at ty = 20
m.y. on each straight line, a second line was
drawn by repeatedly adding 10°C and cutting the
heating time in half—or subtracting 10°C and

doubling the time. In each case the resulting
slightly curved line has an average slope (over the
range of about 0.6 to 300 m.y.) similar to that of
the related straight line. Thus the apparent activa-
tion energies which we have inferred for given
LOM values are in good agreement with those
required to cause the doubling in rate per 10°C
temperature increase as recommended by Lopa-
tin (1971). The Karweil (1955) diagram, on the
other hand, typically requires higher temperatures
for Tertiary rocks and lower temperatures for Pa-
leozoic rocks to attain a given LOM value as
compared with temperatures shown in Figure 3.

APPLICATION TO PETROLEUM GENERATION

One of the important applications of studies of
organic metamorphism of potential petroleum
source rocks is the determination of subsurface
depths at which oil and gas are generated from
the kerogens of those rocks. Such information in
turn provides useful limitations on the timing of
oil and gas expulsion, on the floor of oil in reser-
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voirs, and on other related questions. The appli-
cation of the LOM scale to petroleum generation
will be discussed.

As summarized by Vassoyevich et al (1970), the
specific stage of the organic metamorphic process
(thus the value of LOM) at which oil is generated
in a given fine-grained source rock depends to
some extent on the type of source rock. Those
authors, however, defined a principal stage of oil
generation in terms of coal rank—a stage which
includes oil generation from a wide variety of
source rocks. Similarly, they indicated principal
stages of generation of gas condensate and late-
katagenetic (high-temperature) methane. They re-
ferred to the whole stage prior to oil generation as
a stage of formation of early diagenetic methane,
which includes methane of biologic origin. The
correlation of Vassoyevich’s stages with the LOM
scale via percent volatile matter is shown in Fig-
ure 5. According to that correlation the stage of
formation of diagenetic methane and the three
principal stages of generation of oil, condensate
plus wet gas, and high-temperature katagenetic
methane fall in LOM ranges of < 7.8, 7.8-11.6
(mainly 9-10), 11.6-13.5, and > 13.5 respectively.

Another indicator of oil generation is the matu-
ration of source-rock hydrocarbons. On the basis
of compositions of high-boiling n-paraffins
(method of Bray and Evans, 1961) and naph-
thenes (method of Philippi, 1965) in both crude
oils and source rocks, the compositions of source-
rock hydrocarbons first become crude-oil-like
(mature) in the LOM range of about 9 to 11.5
(Fig. 5). As seen in the figure, this zone of initial
maturity occupies essentially the high-LOM two-
thirds of Vassoyevich’s principal stage of oil gen-
eration. This suggests that at least the low-LOM
one-third of Vassoyevich’s oil stage typically rep-
resents oil generation without reaching maturi-
ty—therefore without effective oil expulsion from
the source rock.

Examples of the observed relations of LOM
and petroleum generation to depth are shown for
two wells—one in the Anadarko basin of Oklaho-
ma (Fig. 6) and one in the Piceance basin of Col-
orado (Fig. 7). In both figures the LOM values
were determined by vitrinite reflectance and, for
comparison, by the use of T, and t, in accor-
dance with Figwre 3. Vassoyevich’s principal
stages of petroleum generation and the zone of
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FiG. 5—Organic metamorphic stages of petroleum

generation.

initial maturity have been superimposed on both
figures on the basis of the relation shown in Fig-
ure 5 and utilizing LOM values derived from vi-
trinite reflectance. Figures 6 and 7, therefore, il-
lustrate the prediction of specific depths at which
oil, gas condensate, and methane would be gener-
ated by source rocks at any given location.

The two examples do not show linear relations
of LOM with depth. Both figures, however, do
show a similar type of nonlinearity; i.e., at shal-
lower depths the observed LOM values are signif-
icantly greater than those defined by linear rela-
tions of LOM to depth. Pusey (1973a, p. 24) has
reported a strikingly similar nonlinearity in his
graph of “paleotemperature” versus depth for a
well in the Anadarko basin—actually in the same
county in Oklahoma as the well of Figure 6. Pu-
sey derived the paleotemperature values from
electron-spin-resonance (ESR) parameters of aro-
maticity. Because of the similarity between the
graph of LOM versus depth and the graph of pa-
leotemperature versus depth, and because a pa-
leotemperature greater than 250°F near the sur-
face in Beckham County, Oklahoma, seems quite
unlikely, we conclude that Pusey’s paleotempera-
ture scale is not simply temperature but, instead,
a combined temperature-time scale which is relat-
able to LOM.
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FiG. 6—Relations of LOM and petroleum generation to depth: Shell Rumberger 5, Beck-
ham County, Oklahoma, Anadarko basin. LOM is based on vitrinite reflectance (®); for
comparison, LOM values based on T, and t,, (see Fig. 3, using 260 x 10° years for t,g) are
shown as x’s.
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FiG. 7—Relations of LOM and petroleum generation to depth: Mobil Unit T-52-19G, Rio
Blanco County, Colorado, Piceance basin. LOM is based on vitrinite reflectance (®); for
comparison, LOM values based on T,,,, and t, (see Fig. 3, using 35 X 10° years for t,,,) are

shown by x’s.

Possibly the nonlinearity of both LOM and
“paleotemperature” with depth is mainly a result
of the observed increase in apparent activation
energy with increasing LOM. The lower activa-
tion energies (at low LOM values) indicate a
greater importance of time with respect to tem-
perature. This results in a significantly greater im-
portance of total burial time at lower levels than
at higher levels of organic metamorphism, and
therefore a greater nonlinearity of the type ob-
served would be expected for Paleozoic than for
Mesozoic or Cenozoic rocks. This appears to be
borne out by a comparison of the curves of Fig-
ure 6 (mainly Pennsylvanian) and Figure 7 (Up-
per Cretaceous to Eocene), and it suggests that no
single scale of organic metamorphism can be ex-
pected to be linear with maximum depth for sub-
surface sections of widely varying ages.

CONCLUSIONS

The LOM scale is a scale of organic meta-
morphism applicable to the organic matter in
fine-grained sedimentary rocks. The scale simply
represents a way of exhibiting the relative thick-
nesses of the various ranks of a standard subsur-
face coal-rank column—essentially that of Sug-
gate (1959). However, it has proved to be a
convenient one for use in geologic studies of tem-
perature histories of petroleum source rocks.
Probably its main advantage is that it is a single

numerical scale covering the entire thermal range
of interest in petroleum generation and destruc-
tion. Although not a primary measurement, it
correlates with coal rank and other scales or mea-
sures of organic metamorphism; therefore, LOM
can be determined by any of these other tech-
niques and can be applied to problems such as
petroleum generation in fine-grained rocks and
thermal destruction of crude oil accumulations in
reservoir rock.

The reported relation of maximum temperature
(T a0 and effective burial time (toy) to LOM pro-
vides a suitable approximate method for estimat-
ing levels of organic metamorphism within the
LgM range of about 9 to 16, For such estimates
accurate formation temperatures are essential.
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